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Abstract: In order to better utilize the residual polymers formed after polymer flooding,
the distribution and the presence of the polymers after polymer flooding were studied. This paper
studied the vertical and plane distribution of the hydrophobically-associating polymer in addition
to measuring the parameters after polymer flooding, which is important for numerical reservoir
simulation. The results showed that the polymers mainly enter into the high permeability
zone and distribute in the mainstream line area with only a small portion in the wing area.
Based on the comparison of various experimental methods, double-slug experiments were chosen to
measure the inaccessible pore volume and retention, which is considered to be the most accurate,
most time-consuming and most complex method. Following this, we improved the processing
method of experimental data by reducing it to one experiment with two parameters. At the same time,
we further enhanced the accuracy of the experimental results. The results show that at 1750 mg/L,
the inaccessible pore volume of the polymer is 25.8%. When the detention is 68.2 µg/g, the inaccessible
pore volume constituted 22% of the total polymer, with the other 77.7% being the dissolved polymer.
Moreover, the static adsorption and dynamic detention were measured, with the results showing
that the static adsorption is larger than dynamic detention. Therefore, in the numerical reservoir
simulation, using the static adsorption capacity instead of the dynamic detention is unreasonable.
The double-slug method was chosen since it is more accurate for the determination of various
parameters. Meanwhile, in order to enhance the accuracy of results, we improved the treatment
of data.
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1. Introduction

During the development of an oilfield, oil recovery can be improved obviously by injecting
polymers [1–5] into the formation, and some scholars have provided extensive reviews of the polymer
concentrations, viscosities, and bank sizes used during existing and previous polymer floods. It is
believed that the polymer flooding technology needs to be improved in many aspects, such as the risk
of mechanical degradation, the produced fluid processing, the large number of polymers remaining in
the formation after polymer flooding [6,7], and so on. The residual polymer will be industrial waste if
it is not fully utilized. Furthermore, a large gap will occur between predicted results and the actual
situation without experimental evidence since the dynamic prediction needs to be adjusted according
to the experience of the reservoir engineer [8]. The distribution of the polymer in the formation is
affected by many factors, such as heterogeneity [9], polymer concentration [10], polymer molecular
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weight [11], injection rate [12] and so on. Clarifying the distribution of polymers can provide the
criteria for the next step to fully utilize the residual polymer. The presence [13–16] of polymers in
porous media can be divided into two parts: polymers in the inaccessible pore volume (VIP) or
polymers in the accessible pore volume. The latter has two states: detention [17] (including adsorption
and captation) and dissolved polymers, which is shown in Figure 1. The inaccessible pore volume
occurs primarily because polymer molecules are large relative to solvent molecules and pores in the
reservoir rock [18]. The VIP for polymer flooding has both positive and negative effects [19,20]. It is
known that VIP affects the rate of movement of polymer molecules through the medium. It is also
probable that solvent interactions affect the flow and dispersion of solvent in which the polymers
are dissolved. Table 1 shows a model [21], which depicts the serious impact of VIP on the polymer
flooding development index and on deciding follow-up operations. However, due to the complexity
of the experiment, the VIP is hardly measured with the requirement for adjustment of parameters
in the numerical models. If the VIP is not chosen to be a suitable value, it will lead to an inaccurate
prediction of the polymer breakthrough time [22].
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Table 1. Effect of the inaccessible pore volume (VIP) on polymer flooding development index [21].

VIP Polymer Breakthrough Time/Month Recovery When Water Cut at 95%/% The Additional Recovery/%

0 79.7 44.55 20.35
0.15 67.1 37.83 13.63
0.25 58.3 33.34 9.14
0.35 50.5 28.85 4.65
0.45 42.3 24.37 0.17

Notes: Table 1 comes from reference [21].

In polymer flooding, polymer retention is defined to include the combined effects of polymer
adsorption on rock and mechanical entrapment of the polymer in pores. Polymer retention can have
a major impact on polymer-slug propagation and economics. Manichand and Seright [23] calculated
that a 1240-ppm polymer solution exhibiting a retention value of 100 mg/g would require injection
of 50% more polymer to reach a target distance in a formation (relative to the case for no polymer
retention). They also reported field polymer (HPAM) retention values ranging from 50 to 250 mg/g for
the Tambaredjo polymer flood in Suriname. Detention is also an important basis for the engineering
design and the input data for the numerical reservoir simulation [24,25], which affects the formation
permeability reduction factor. The numerical simulation often uses static adsorption instead of the
dynamic detention, although there is a significant difference between them. The static adsorption is
unable to represent the real reservoir retention law, because it does not measure the losses caused by
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the mechanical trapping and hydrodynamic retention of polymers in the pore. Sometimes we use
the material balance method [13] to measure the dynamic retention, but the error of material balance
method is relatively large. The material balance method consists of injecting polymer into the core
until the adsorption is saturated, and the amount of polymer injected minus the amount of polymer
produced is the amount of dynamic retention. Because of the polymer remaining in the injection
pipeline, the experimental error is particularly large. It is frequently difficult to obtain the VIP and
dynamic retention for polymer flooding numerical simulations, which seriously affects the results of
numerical simulation and prediction of the dynamic field.

The distribution of polymers was studied in a macroscopic view, while the parameters, such
as VIP and detention, are determined in microscopic scales. The primary objectives were (1) to
study the distribution of polymer concentration and viscosity in the formation, (2) to determine the
microscopic state of existence which provides basic parameters for a mathematical model, (3) to prove
that the double-slug method is feasible, and that one experiment can yield two data sets including VIP
and dynamic retention of the polymer at the same time. This study has significance in guiding the
numerical simulation of polymer and dynamic monitoring.

2. Materials and Method

2.1. Experimental Materials

The chemicals include hydrophobic associating polymers (molecular weight of 1250 × 104 g/mol,
solid content of about 90% and degree of hydrolysis of about 25%), the simulated oil, of which
the oil viscosity is 73 mPa·s at 65 ◦C, and the API of crude oil is 15. For the experimental water,
we prepared the synthetic brine according to the current polymer flooding situation of the oilfield,
with the composition shown in Table 2, and other materials shown in Table 3.

Table 2. The composition of synthetic brine.

Composition Na+, K+ Ca2+ Mg2+ CO3
2− HCO3

− SO4
2− Cl− Total Salinity

content/(mg/L) 3091.96 276.17 158.68 14.21 311.48 85.29 5436.34 9374.12

Table 3. List of materials required for experiments.

Experiment Artificial Core Chemicals and Materials

Three Parallel Core Experiments

Three cylindrical cores (sectional area,
4.9 cm2; length, 9.8 cm). The water
permeability of cores is 300 × 10−3

µm2, 900 × 10−3 µm2 and
2700 × 10−3 µm2

polymer, constant flux pump, core holder, Brookfield DV-II
rotational viscometer, pressure sensor(Haian County Petroleum
Science and Technology Co., Ltd., Haian, China), precise pressure
gauge, graduate, cylinder, oil tank, et al.

Three-Dimensional Slab Model
Experiment

The slab model (the model parameter
is shown in Table 4.

polymer, constant flux pump, core holder, Brookfield DV-II
rotational viscometer (DV-II+, Brokfield, WI, USA),
pressure sensor, precise pressure gauge, graduate, et al.

Polymer Concentration
Determination Method

polymer, sodium acetate, cadmium iodide, hydrated aluminum
sulfate, saturated bromine water, soluble starch, acetic acid,
sodium formate, UV-2100 spectrophotometer, BS423S millesimal
balance (BS423S, Shanghai Precision Scientific Instruments Co.,
Ltd., Shanghai, China), et al.

Potassium Thiocyanate Tracer
Determination Method

tracer (potassium thiocyanate), sodium formate, nitric acid,
ammonium ferrous sulfate, UV-2100 spectrophotometer (UV-2100,
unico Shanghai, China), BS423S millesimal balance, et al.

Static-Equilibrium Adsorption
polymer, sand, temperature controlled bath, conical flask, the
chemicals and materials used in Polymer Concentration
Determination Method et al.

Double-Slug Experiments
Two cylindrical core (sectional area,
4.9 cm2; and length,9.8 cm), and their
gas permeability is 2500 × 10−3 µm2

polymer, tracer (potassium thiocyanate), the chemicals and
materials used in Polymer Concentration Determination Method
and Potassium Thiocyanate Tracer Determination Method.
constant flux pump, core holder, BS423S millesimal balance,
Brookfield DV-II rotational viscometer, pressure sensor, precise
pressure gauge, graduate, et al.
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The experimental instruments mainly include two kinds of artificial core: one is a cylindrical core
and the other is a three-dimensional slab model, and the model’s parameters are shown in Table 3.
In laboratory experiments, we frequently use artificial cores, including the slab model, instead of
the precious natural cores. The artificial cores consist of quartz sand and cement. The method for
measuring the permeability of the slab model is as follows: in the process of core manufacture, we make
a very big model first, and then cut a small piece, which can be made into one dimensional core for
example a cylindrical core. We can measure the permeability of the small core. The composition of the
whole slab model is the same, so the permeability of the small core represents the permeability of the
whole slab model.

2.2. Methods

2.2.1. Three Parallel Core Experiments

The temperature is set at 65 ◦C, which is under the reservoir conditions, while the injection rate
is 0.5 mL/min. Parallel cores were used to determine the effect of heterogeneity on the polymer
distribution, with the schematic drawing of the flow shown in Figure 2. The testing procedure includes
the following steps. 1© Fill the pack with sand and obtain the dry weight, before saturating it with
water, measuring the wet weight and calculating the pore volume. 2© Flood with water and measure
the permeability after the pressure is stable, with the permeability of cores being 300 × 10−3 µm2,
900 × 10−3 µm2 and 2700 × 10−3 µm2 respectively. 3© Inject the oil into the core to establish irreducible
water saturation (short for Swi). 4© Install the three cores in parallel and flood with water until the
water cut is 98%. 5© Inject the polymer solution at 1500 mg/L to a maximum of 0.57 PV. According to
the oilfield development plan, the injection process will be ended after injection of the 0.57 PV polymer.
6© Record the fluid output volume of each core, which is equal to the injection volume of the polymer.
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2.2.2. Three-Dimensional Slab Model Experiment

The three-dimensional slab model was used to measure the polymer’s viscosity and concentration
distribution after polymer flooding, with the model parameters shown in Table 4. The model and well
spacing pattern is shown in Figure 3. The test procedure involves the following steps. 1© Measure the
dry weight of the model. 2© Saturate model with water, measure the wet weight of the model and
calculate the pore volume of the model. The value of pore volume equals the ratio of the difference
between wet weight and dry weight to water density. 3© Calculate the initial oil saturation (short for
Soi) after injecting the simulated oil in the model, which equals the ratio of volume of injected oil to
pore volume of the model. 4© Inject polymer solution at 1500 mg/L to a maximum of 0.57 PV. 5© Take
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the samples from the sampling wells, before measuring the viscosity and concentration. 6© Draw the
isograms of viscosity and concentration using Sufer8.0 software (Golden Software, Golden, CO, USA).

Table 4. The model parameters.

Gas Permeability/×10−3 µm2 Size/cm Porosity/% Soii/%

2500 59.8 × 59.2 × 4.58 30.4 73.1

Energies 2017, 10, 2118 5 of 13 

 

2.2.2. Three-Dimensional Slab Model Experiment 

The three-dimensional slab model was used to measure the polymer’s viscosity and 

concentration distribution after polymer flooding, with the model parameters shown in Table 4. The 

model and well spacing pattern is shown in Figure 3. The test procedure involves the following steps. 

① Measure the dry weight of the model. ② Saturate model with water, measure the wet weight of 

the model and calculate the pore volume of the model. The value of pore volume equals the ratio of 

the difference between wet weight and dry weight to water density. ③ Calculate the initial oil 

saturation (short for Soi) after injecting the simulated oil in the model, which equals the ratio of 

volume of injected oil to pore volume of the model. ④ Inject polymer solution at 1500 mg/L to a 

maximum of 0.57 PV. ⑤ Take the samples from the sampling wells, before measuring the viscosity 

and concentration. ⑥ Draw the isograms of viscosity and concentration using Sufer8.0 software 

(Golden Software, Golden, CO, USA). 

Table 4. The model parameters. 

Gas Permeability/×10−3 μm2 Size/cm Porosity/% Soii/% 

2500 59.8 × 59.2 × 4.58 30.4 73.1 

 

Figure 3. The well spacing pattern. 

2.2.3. Polymer Concentration Determination Method 

The starch–cadmium iodide method [26] is used to measure the polymer concentration, with the 

concentration–absorbance standard curve shown in Figure 4. The method can directly determine the 

polymer concentration, with simple operation and a fast detection rate. R2 is the linear correlation 

coefficient, which represents the linear correlation of two columns of data. 

 

Figure 4. The polymer concentration–absorbance standard curve. 

y = 0.0947x

R
2
 = 0.9677

0.0

0.4

0.8

1.2

1.6

2.0

0 5 10 15 20 25

polymer concentration/mg·L
-1

a
b

so
rb

a
n

c
e

Figure 3. The well spacing pattern.

2.2.3. Polymer Concentration Determination Method

The starch–cadmium iodide method [26] is used to measure the polymer concentration, with the
concentration–absorbance standard curve shown in Figure 4. The method can directly determine the
polymer concentration, with simple operation and a fast detection rate. R2 is the linear correlation
coefficient, which represents the linear correlation of two columns of data.
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2.2.4. Potassium Thiocyanate Tracer Determination Method

The spectrophotometer method [27] was applied to determine the concentration of the potassium
thiocyanate tracer, with the tracer concentration–absorbance standard curve shown in Figure 5.
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2.2.5. Static-Equilibrium Adsorption

The static-adsorption tests were performed on sand particles at 65 ◦C, and the particle size of
quartz sand was 0.25–1 mm. The polymer solutions were added to clean, dry sands with a liquid:
solid ratio of approximately 5:1. Then, the mixtures were stirred for 15 min to ensure adequate contact,
and left quiescent for 24 h. Next, the supernatant was decanted from the mixtures and centrifuged
at 300 r/min for further separation. Then, the fully separated polymer solutions were tested by
the starch–cadmium iodine method [26]. The static-adsorption was determined by the polymer
concentration change of the solution, volume of polymer solution, and the mass of sand particles:

The static adsorption =
the polymer concentration change × volume of polymer solution

the mass of sand particles
(1)

2.2.6. Double-Slug Experiments

The experiments described in this paper were all single-phase displacements of polymer solutions
through consolidated sandstone. All the cores were prepared by evacuating and saturating with brine,
with the pore volumes of the cores measured at this time. The experimental floods reported were
conducted in severe steps, as depicted in Figure 6. The test procedure included the following steps.
1© Prepare 500 mg/L polymer solution and select potassium thiocyanate (short for KSCN) as the

tracer at a concentration of 300 mg/L. 2© Blend the 1750 mg/L polymer solution and 300 mg/L KSCN
solution, before injecting the first mixed fluid slug into the core. 3© Monitor the pressure changes and
sample the outflow mixed fluid, before determining the concentration of polymer and thiocyanate
root (short for SCN−). 4© Continuously inject the mixed fluid system until the pressure is stable,
before injecting the formation water until there is no polymer in the effluent. 5© Inject the second
mixed fluid slug into the core, which contains 500 mg/L polymer solution and 300 mg/L KSCN
solution. 6© Monitor the pressure changes and sample the outflow of mixed fluid, before determining
the concentration of polymer and SCN−. 7© Continuously inject the mixed fluid system until the
pressure is stable, before injecting the formation water until there is no polymer in the effluent.
The schematic diagram of the experimental results is shown in Figure 7. Although the tracer dissolves
in the polymer solution, the curve is still separated. Two reasons lead to the first slug separation,
one is the inaccessible pore volume caused the forefront of the polymer slug advance to break through,
the other is the detention caused the forefront of the polymer slug to be delayed. Separation of the
second slug was caused by the inaccessible pore volume. In Section 3.2.1, we will explain the reason
why in detail and explain how to get the parameters for VIP and polymer retention.
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3. Results and Discussion

3.1. Distribution of Polymer

3.1.1. Vertical Distribution

Using the three parallel cores which permeability (short for K) are shown in Table 5, the variation
coefficient of permeability is 0.78 and the total pore volume is 44.3 mL. After injecting 0.57 pore volume
(short for PV) polymer solution into the three parallel cores, the polymer concentration is 1750 mg/L.
Table 5 shows that 68.3% of the polymer solution flows into the high permeability layer. Because the
polymer solution is not a Newtonian fluid, the results presented in this table do not follow Darcy’s Law.

Table 5. The results of the three parallel core experiment.

Core K/×10−3 µm2 PV/mL φ/% Polymer Injection
Volume/mL

Injection Volume
Percentage/%

high permeable core 2700 15.4 32.3 17.2 68.3
medium permeable core 900 14.8 30.8 6.6 26

low permeable core 300 14.1 29.4 1.5 5.7

3.1.2. Plane Distribution

The three-dimensional slab model experiment is applied to determine the viscosity and
concentration distribution after the polymer flooding. The relationship between viscosity of the
polymer solution and concentration is shown in Figure 8. The viscosity distribution is shown in
Figure 9a with units of mPa·s, while the concentration distribution is shown in Figure 9b with units of
mg/L. The
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(b) concentration distribution

Figure 9 shows that the polymer mainly distributes in the injection–production well mainstream
line area. One reason is that the polymer flooding front is constantly diluted by the formation water.
The other is that regarding the retention of the polymer, the farther from the injection well, the lower
the concentration. Therefore, we deduced that the residual oil mainly distributes in the two wings
away from the mainstream line of injection and production wells.

3.2. Present State of Polymers

This paper mainly determines the parameters to characterize the polymers’ present
state, including inaccessible pore volume, detention (including adsorption and capture) and
dissolved polymers.

3.2.1. Determination of Inaccessible Pore Volume

The VIP and dynamic retention can be obtained by a double-slug experiment. We used the
double-slug method to determine the VIP of polymers at 65 ◦C and 1750 mg/L, and the experimental
process follows 2.2.6, with the core parameters shown in Table 6. The gas slippage effect causes the
significant difference between brine and gas permeabilities. Often, the gas permeability is larger than
the brine permeability in the same rock.
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Table 6. The basic parameters of core.

Length/cm
Cross-Sectional

Area/cm2

Gas
Permeability/10−3

µm2

Water
Permeability/10−3

µm2
Dry Weight/g Wet Weight/g Pore Volume/mL Porosity/%

9.45 4.52 2484 1600 71.48 83.98 12.5 29.23

The normalized concentration of polymer is defined as:

Cp
* = Cp/Cp0 (2)

where Cp is the concentration of the produced polymer and Cp0 is the initial concentration of the
injected polymer.

The normalized concentration of tracer SCN− is defined as:

Cs
* = Cs/Cs0 (3)

where Cs is the concentration of produced SCN− and Cs0 is the initial concentration of injected tracer.
When the injection volume is in the interval [0 PV, 10.27 PV], the polymer concentration profile and
tracer concentration profile separates. There are two reasons that lead to this separation: one is
the inaccessible pore volume causing the forefront of the polymer slug to break through, while the
other is the detention causing a delay in the forefront of the polymer slug. Figure 10 shows that the
inaccessible pore volume has a greater impact on separation. When the injection volume is in the
interval [10.27 PV, 20.13 PV], the inaccessible pore volume causes separation, but the water displacing
the polymer solution leads to the inhomogeneous displacement. When the injection volume is in
the interval [20.13 PV, 29.79 PV], since the polymer has been balanced in the first polymer slug,
the inaccessible pore volume causes the separation, while the polymer solution displacing the water
leads to a uniform displacement. C/C0 means the normalized concentration. Therefore:

VIP =

29.79∫
20.13

(C∗
p − C∗

s )dPV/PV = 25.8% (4)
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3.2.2. Dynamic Retention Characteristics

Dynamic Retention of the Polymer

(1) Measurement of Dynamic Retention

The experimental data of the first slug was used in the double-slug method (the equivalent of
the large slug method [28]), which improved experimental precision and reduced the number of
experiments. In order to avoid the situation of low mobility fluid being displaced by high mobility
fluid in the second interval, the third interval was used instead of the second. After integration,
the retention of the polymer is 68.2 µg/g when its concentration was 1750 mg/L.

(2) Contrast of Dynamic Retention and Static Adsorption

In order to simplify the operation of the reservoir numerical simulation, the converted number
of static adsorption was often used instead of the dynamic adsorption. In this paper, the static
adsorption of the polymer solution at different concentrations at 65 ◦C and the dynamic retention of
the polymer were measured with the gas permeability at 2500 × 10−3 µm2. The results are shown in
Figure 11. The method in a previous study [14] was used in measuring the static adsorption, when the
experimental temperature was 65 ◦C, the solid−liquid ratio was 1:5 and the particle size of quartz
sand was from 0.25 to 1 mm.
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Figure 11 shows that the static adsorption and retention capacity increase significantly with
an increase in polymer concentration. However, both the variation law and the magnitude are different.
The static adsorption is consistent with the Langmuir adsorption law, while the dynamic retention
shows a linear relationship with polymer concentration. The ratio of static adsorption and dynamic
retention varies with polymer concentration, but it is about 25 in the range of concentration measured.

Dynamic Adsorption of the Polymer

Using cores with the same specifications as in Section “Dynamic Retention of the Polymer”,
which were saturated with methyl silicone oil for 48 h, the wettability reversed. The oil film limited
the polymer adsorption in the rock surface [29]. The polymer solution with a concentration of
1750 mg/L was used for polymer flooding and the method of measuring retention was used in the
experiment. The results are shown in Figure 12. The difference between the integration of two curves
was the dynamic adsorption capacity. The dynamic adsorption was 43.4 µg/g, accounting for 63.6%
of retention.
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Figure 12. The dynamic adsorption of polymers.

Dynamic Trapping of the Polymer

The dynamic retention of the polymer includes dynamic trapping of the polymer and dynamic
adsorption of the polymer. The dynamic retention is 68.2 µg/g and the dynamic adsorption is 43.4 µg/g.
Therefore, the dynamic trapping is 24.8 µg/g, accounting for 36.4% of retention.

Dissolution Amount of Polymer

To calculate the amount of dissolved polymer in pores after polymer flooding, the volume of the
core is 1 m3, the core porosity after polymer flooding is 29.23% and the inaccessible pore volume is
25.8%. It is known that the mass concentration of the injected polymer is 1750 mg/L, so the amount of
injected polymer can be calculated as:

Sandstone density equals core mass divided by core volume = dry weight of core/(length of core
× cross-sectional area of core × (1 − porosity)) = 71.48/(9.45 × 4.52 × (1 − 29.23%)) = 2.36 g/cm3

The mass of core in contact with polymer is: 1 × (1 − 29.23%) × (1 − 25.8%) × 2.36 × 106 =
1.24 × 106 g.

When the amount of retention is 68.2 µg/g, the total amount of retention is: 68.2 × 1.24 × 106 = 84.6 g.
The percentage of retention from total amount of polymer:

wRetention = 84.6/379 × 100% = 22.3% (5)

The percentage of dynamic adsorption from total amount of polymer:

wdynamic adsorption = 22.3% × 63.6% = 14.2% (6)

The percentage of the trapped polymer from total amount of polymer:

wthe trapped polymer = 22.3% − 14.2% = 8.1% (7)

The percentage of the dissolved polymer from total amount of polymer:

wdissolved polymer = 100% − 22.3% = 77.7% (8)

4. Conclusions

The polymer mainly enters into the high permeability zone and distributes in the main stream
line area, with only a small proportion in the wing area. Therefore, we deduced that the residual oil
mainly distributes in the two wings away from the mainstream line of injection and production wells.
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The double slug method is feasible and can be obtained using two parameters, VIP and detention.
The polymer concentration–absorbance standard curve and the tracer concentration–absorbance
standard curve are the basic work.

This paper provided a complete set of polymer distribution state parameters. The results show
that at 1750 mg/L, the inaccessible pore volume of the polymer is 25.8%. When the detention is
68.2 µg/g, the inaccessible pore volume constituted 22% of the total polymer, with the other 77.7%
being the dissolved polymer. The dynamic adsorption in retention is 43.4 µg/g, accounting for 14.2%
of the total polymer, while the dynamic trapped polymer is 24.8 µg/g, accounting for 8.1% of the total
polymer. It has great significance in guiding numerical polymer simulation and dynamic monitoring.

With an increase in polymer concentration, both the dynamic retention and static adsorption
increase. The dynamic detention is smaller than static adsorption and the ratio changes with
polymer concentration. If the converted amount of static adsorption is used instead of the retention,
the deviation is large. In the numerical reservoir simulation, using the static adsorption capacity
instead of the dynamic detention is unreasonable.
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